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Abstract 

A method is described for minimizing a least-squares 
residual to Sayre's equation as a function of electron 
densities under the constraints that each of the 
observed structure factors is strictly compatible with 
the densities, i.e. IF.]-  IF~bs I = 0. By evaluation of 
the residual in real space using fine grid sizes, the 
method enables one to obtain density maps of 
atomic resolution even with low-resolution data. 
Numerical calculations have been made at various 
resolutions for the crystal structure of a small mol- 
ecule containing only C, N, O and H atoms. It has 
been found that the residual can be used as a good 
figure of merit when the resolution of the observed 
diffraction data is higher than 1.5-1.8 A. With 2.0 A 
data, however, several unusual structures whose 
residuals are lower than that of the correct structure 
have been found. Their existence may indicate a 
limitation inherent in direct methods based on the 
principle of 'atomicity' in general. 

Introduction 

The diffraction data obtainable from a crystal are in 
general never sufficient to determine uniquely the 
electron-density distribution of the crystal structure, 
that is, an infinite number of density maps can be 
compatible with the observed data. Therefore, in 
order to select the correct one, it is necessary to 
impose additional physical or chemical restrictions 
on the densities. In usual structure refinements, this 
requirement is fulfilled by the use of atomic scat- 
tering factors tabulated from quantum-mechanical 
calculations. These refinements, however, are pos- 
sible only with knowledge of the approximate posi- 
tions of atoms. Hence, we need methods that can 
produce interpretable density maps without knowl- 
edge of atomic positions, notorious probabilistic 
direct methods [for a review see Woolfson (1987)] 
being such examples. In developing such a method, 
there are three remarks we should keep in mind: 
(i) The method should provide a means of selecting a 
single 'best' map out of many possible ones. This can 
be done most directly by using variational techniques 
and maximizing or minimizing a certain function of 
electron densities or phases. (ii) The method should 
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introduce sufficient restrictions into the densities. 
When variational techniques are used, this amounts 
to inventing a suitable function. (iii) It is necessary to 
examine whether the 'best' map thus obtained corre- 
sponds to the correct structure. 

Probabilistic direct methods aim to maximize the 
probability that observed structure factors have a 
certain combination of phase angles. Although the 
probability calculations are based on the 'atomicity' 
of crystal structures, what restrictions the methods in 
turn impose on electron densities are not well 
known. The maximum-entropy method (e.g. Livesey 
& Skilling, 1985) maximizes the Jayne/Shannon 
entropy and provides the most unbiased, in the sense 
of information theory, estimation of electron densi- 
ties; but, again, the restrictions the method imposes 
on densities are not well known except that it makes 
density maps everywhere positive and smooth. Sayre 
(1972) developed a variational method in which a 
least-squares residual to Sayre's equation (Sayre, 
1952) is minimized. This method has the potential to 
produce a density map such as is required in that all 
peaks have the shape compatible with a given atomic 
scattering factor. Although this would be possible for 
hypothetical structures consisting solely of identical 
atoms, we could expect that the exceptionally strong 
restriction on the densities may also be useful for 
more realistic structures containing heterogeneous 
atoms. Indeed, previous calculations based on 
Sayre's equation have achieved reasonable success in 
the field of small molecules (Krabbendam & Kroon, 
1971; Navaza, 1986; Debaerdemaker, Tate & 
Woolfson, 1988) and macromolecules (Hoppe & 
Gassman, 1964; Barrett & Zwick, 1971; Sayre, 1974; 
Cutfield, Dodson, Dodson, Hodgkin, Isaacs, Sakabe 
& Sakabe, 1975; Zhang & Main, 1990; Woolfson & 
Yao, 1990). The present study attempts to enhance 
Sayre's variational method. 

Sayre's equation expresses that, when a crystal 
structure consists only of identical resolved atoms, 
the electron densities p and their squares can be 
related to each other by a function of the scattering 
factor of the atom: 

p- ~0 * p2 = 0, (1) 

where the symbol * denotes a convolution and ~0 is 
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the Fourier transform of gt; g t = f / ( f , f ) ,  where f 
and f * f  stand for the scattering factors of the atom 
and of the density-squared atom, respectively. By 
transforming (1), we obtain a more familiar form of 
Sayre's equation in reciprocal space as 

Fh -- (1/ V) ~hZ FkFh_k = O. (2) 
k 

The two forms are in principle equivalent but it 
should be noted that, when the structure factors used 
in (2) are limited to observed ones, (2) is a poor 
approximation because the summation it contains 
involves structure factors outside the observed limit. 
On the other hand, (1) can be evaluated to any 
desired accuracy if fine enough grid sizes are 
employed. Furthermore, the use of (1) enables us to 
use fully the information of the atomic scattering 
factor contained in 0, while in the case of (2) the use 
is limited by the resolution of the observed data. 

In view of this, another method has been 
developed for minimizing the least-squares residual 
to Sayre's equation. This method is in principle the 
same as Sayre's method but differs in several details: 
(i) The residual is evaluated in real space using fine 
grid sizes. (ii) The residual is minimized as a function 
of densities rather than phases under the constraints 
that each of the observed structure factors is strictly 
compatible with the densities. (iii) To reduce the 
effects of heterogeneous atoms, observed structure 
factors are modified so as to conform to an averaged 
Gaussian atom. With these modifications, the 
present method acquires a capability of obtaining a 
density map of atomic resolution even with low- 
resolution data. Numerical results are presented that 
demonstrate how the present method works at vari- 
ous resolutions. 

Sayre's equation in the form of (1) has already 
been used in different contexts (Navaza, 1986; Main, 
1990). Some modifications have been proposed that 
make Sayre's equation in the form of (2) more usable 
(Barrett & Zwick, 1971; Sayre, 1972, 1975; Shiono & 
Woolfson, 1991). Hoppe (1963) used a least-squares 
residual different from the one used by Sayre (1972). 

M e t h o d  

Consider a unit cell divided into equal pixels, with Px 
being the average electron density of the pixel 
located at x. (The same notation is also used for 
other types of densities.) Structure factors are calcu- 
lated as F h = [Fh[ exp i~o h = (V/N) •xPx  exp (2zrih • x), 
where V and N denote the cell volume and the 
number of pixels, respectively. Then, the minimum of 
a least-squares residual to Sayre's equation is found: 

Q = (V/2N)Z(px-  fix) 2 (3) 
x 

under the constraints 

gh = lEvi- IFgbsl =0 ,  (4)  

where ~ = O * p2 and h comprises the set of reflec- 
tions used. According to a constrained minimization 
method in general use (Hestenes, 1969; Ichikawa, 
1975), solutions to the present problem may be 
obtained by minimizing the measure 

H = Q -  Zahgh + (W/2)Zg~, (5) 
h h 

as a function of Lagrange multipliers ah and 
densities, provided that the positive constant w is 
sufficiently large. This minimization may proceed as 
follows. First, with Ah kept at the current values, H is 
minimized with respect to Px. This is done pixel-wise 
by the method of steepest descent, using the 
derivative 

NOH 
V Opx- Px-Px-2px/Sx-Z[Ahh + w ( [ F ~ b s l -  IFhl)] 

× exp (iq~h) exp ( - 2zrih • x), (6) 

where t3 = O * ( P - ~ ) .  Now, we have new estimates 
for px using a constant step size c~: 

p~,eW=px+C,[~x-px+2pxh,,+p~+wApx], (7) 

where 

p ~ =  ~',,th exp iq~h exp ( -  2rrih • x) (8) 
h 

and 

~px - ~(IF~bsl-  IFhl) exp iq~h exp (-- 2rrih • x). (9) 
h 

It should be noticed that, when px is updated, the 
same must be done with ~0h. This minimization step 
is repeated until convergence is obtained. 

Next, we update '~h by new estimates that may be 
obtained by comparing the right-hand side of (6), 
which must have already vanished in the above 
minimization, with the following equation that the 
true solution should satisfy 

~ ) -  p ? ) -  2p?)t37 ) 

- ZA ~°) exp iq~°) exp ( -  27rih • x) = 0. (10) 
h 

Thus, we have 

/~. ~ew .._ /~h "1- w(lr~bsl- ]ghl). (11) 

The whole process up to this point is then repeated. 
If the final convergence is obtained, (11) ensures that 
IFhl = IF bsl. Then, (7) shows that 

px = ~x  + p x~)/(1 - 2bx), (12) 

which indicates that p ,  is equivalent to a solution 
obtained from the Lagrangian L = Q -  Y~hahgh- 

The use of many individual constraints in the form 
of (4) has been questioned and a way has been 
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proposed that uses a single 'weak' statistical con- 
straint Y-h[([Fh]- ]F?,b~])/trh] 2 = C, C -- M, where M is 
the number of reflections used (Gull & Daniell, 1978; 
Wilkins, Varghese & Lehmann, 1983). However, the 
present algorithm has been successfully used for 
maximizing entropy under the 'strong' constraints 
(Sato, 1992) and notable features specific to this 
algorithm were discussed then. 

Implementation 

(a) Modification of observed structure factors 

In order to reduce the effects of hetereogeneous 
atoms, observed structure factors are modified using 
the predetermined overall temperature factor Boveral ] 
and a postulated Gaussian distribution exp (-Bs2) ,  
where s = sin0/A, as 

[F~,bsl[ex p (--Bs2) 7" f .(s= O) / exp ( -  Bov~,s2)3"f.(s)], 
i i 

(13) 

where f is the atomic scattering factor of the ith 
atom and the summations are taken over only C, N 
and O atoms. Then, the crystal structure is con- 
sidered to be composed of identical atoms whose 
scattering factor is expressed as 

f =  i e x p  (-Bs2),  (14) 

where A = 7.if.(s = 0)/7.il. 

(b) Convolutions 

The convolution involved in the calculations of 
4 ' ,  p2 and 4'* ( p - ~ )  is calculated using Fourier 
transformation in such a way that 4 ' , p 2 =  
,~r[~,:-~(p2)], where the symbol : denotes a Fourier 
transform and 

rlt= (1/A)(-B/2"n')3/Z exp (--Bs2/2) (15) 

for the atomic scattering factor in the form of (14). 
When this is done, all Fourier components of 

..1---l(p2) that can be calculated by fast Fourier trans- 
formation are considered and the grid sizes are 
chosen such that the ripples caused by large peaks 
become 4' * p2 _> _ 0.002 e A.-3. It is necessary to use 
grid sizes of 0.20, 0.25 and 0.35 A for B = 6.0, 8.0 
and 14.0/~2, respectively. 

(c) Setting up the initial densities and Lagrange 
multipliers 

The initial densities Px are either input or calcu- 
lated using a given starting set of phases as usual. 
The starting Lagrange multipliers Ah are set to zero. 

(d) Constrained minimization 

Updating of p,, with (7) is to be repeated at most 
five times if shifts of px are larger than 10 -5. Rigor- 

ous convergence of this step is not always required 
for updating of Ah with (11). With the process as far 
as the updating of '~h being defined as one iteration, 
250 iterations were performed in the following 
numerical calculations. In the very first iteration, the 
updating of Px with (7) is repeated at most 50 times. 

(e) Choice of the weight w 

A weight w in the range 2-20 is used. When the 
constraints are rather difficult to fulfil, a larger 
weight is used. The step size of steepest descent is set 
to be Cl = 1/w. The updating of Ah using (11) is 
attenuated by multiplication by a factor of 3/4. 

( f )  Exclusion~inclusion of incorrect reflections 

As detailed previously (Sato, 1992), the present 
algorithm for constrained minimization is not always 
convergent but may sometimes diverge. This diffi- 
culty arises from the large Lagrange multipliers that 
result for those reflections whose phases cannot be 
refined continuously. To eliminate this difficulty, the 
exclusion/inclusion algorithm developed for the 
maximum-entropy calculation is used: Those reflec- 
tions for which [Ah]/[F~bs[ is larger than a given 
threshold are excluded from the data set and then 
included again with Ah = 0 when their calculated 
structure factors fall in the range 0.5 < IFhl/IF bs I < 
1.5. This algorithm introduces a discontinuity into 
the optimization and may facilitate the search path 
to switch to other local minima. In the last 50 
iterations, however, all reflections in the data set 
were always used, although this led some trials to be 
divergent. 

(g) Statistics 

The following values are calculated during and 
after the calculation. 

R = Z[IFh[- Ir~bs[[ / ZIF~bsI, 
h h 

/ 
R~onv = ~,l(-fi,, + P a,,)/(1- 2p,,)- P,,I // ~lP,,I. 

X X 

Rconv is a measure of the extent to which the 
constrained optimization has converged, as it goes to 
zero at the optimum. 

Numerical calculations 

In order to examine how the present algorithm 
works, numerical calculations were made using the 
data observed for 2'-deoxyadenosine (Sato, 1984). 
Crystal data: CIoHIaN503, monoclinic, P2~, a =  
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11.298(2), b=10.393(2) ,  c = 4 . 8 1 9 ( 1 ) A ,  /3= 
101.51 (2) °, V=  554.5 (2) A 3, z =  2, F(000) = 264, 
Bover~, = 2.0 A 2 from the Wilson plot, R = 0.038 for 
2224 observed reflections [sinO/a _ 0.807 A-~, I_> 
2o-(1)]. The same data set as that used in the least- 
squares refinements was used with the scale factor 
obtained from the refinements. The value A = 6.611 
was used for (14). 

The minimization of the least-squares residual to 
Sayre's equation was performed under the 'strong' 
constraints at various resolutions. In all the trials 
presented in this report, the constraints were satisfied 
up to R = 0.0000 and the convergence was achieved 
to the extent 0.0002 ___ R~onv - 0.0040. The resulting 
Rs values are plotted (Fig. 1) as a function of the 
resolution of the data used and B for the density 
maps that can be considered as corresponding to the 
correct structure. These values give us some esti- 
mates of the extent to which Sayre's equation is 
accurate in real situations: the error resulting from 
the overlap of neighbouring atomic densities is very 
small for B =  6-8 A 2 but increases rapidly as 
increases; the error resulting from the heterogeneity 
of atoms, on the other hand, becomes more signifi- 
cant when the resolution of the data is increased. 

Let us examine some such density maps that 
demonstrate some notable features of the present 
method. The first density map (Fig. 2a) was obtained 
when the 2.5 A data (s-< 0.200 A-~, 43 reflections) 
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Fig. l .  R, factors as a f unc t i on  o f  the reso lut ion o f  data and 
plotted for the optimized structures corresponding to the correct 
structure. 

were used with B =  6.0 A 2. The present method 
modifies the densities so as to minimize the residual 
as far as the diffraction data permit. Therefore, when 
the resolution of the data is lowered and, accord- 
ingly, the data become increasingly less restrictive, 
the density map approaches the ones in which all the 
peaks have the shape compatible with the postulated 
scattering factor. In this case, the optimized density 
map is close to the extreme in the above sense and, 
consequently, has a very small Rs value of 0.0143. 
However, this does not mean that the present 
method can obtain the correct structure with the 
data of 2.5 A resolution. In fact, the Rs value is 
higher than the 0.0048 found for an incorrect struc- 
ture. This important aspect is described in detail in 
the following section. 

H / 
(a) 

(b) 

Fig. 2. Optimized densities in the plane of the adenine ring of  
2'-deoxyadenosine. (a) Densities (R, = 0.0143) obtained at 2.5 A 
resolution with N = 6.0 A 2. (b) Densities (R.,. = 0.1085) obtained 
at 0.8 A resolution with B = 6.0 A 2. Contours are drawn at the 
levels _+0.1 x 1.5"e A -3 with the positive contours as solid 
lines, the negative contours as dashed lines. The figures were 
drawn using XTAL3.0 (Hall & Stewart, 1990). 
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On the other hand, a high Rs value of 0.1085 
resulted when the 0.8/k data (s_< 0.625/k - l ,  1152 
reflections) were used with B =  6 .0A 2. This is 
because the minimization of the residual was restric- 
ted by a wealth of diffraction data. However, the Rs 
value was definitely lower than that of any incorrect 
structure. Because of the large residual, the density 
map obtained (Fig. 2b) is far from the extreme and 
contains many regions where the densities are appre- 
ciably negative ( p _  -0 .553 e A-3). Furthermore, 
the peak heights are not uniform [in t h e r a n g e  
16.7-20.7eA-3,  compared with 2 0 . 0 e ~  3 as 
expected from (14)]. Interestingly, the peak heights 
of all N and O atoms are lower than those of C 
atoms. Sayre (1974) obtained a somewhat similar 
result for Fe and S atoms in rubredoxin. 

The use of large B's introduces into density maps 
an additional deformation owing to the overlap of 
neighbouring atomic densities. However, B up to 
15.0 A 2 may be practically usuable and, in some 
cases, more useful than smaller B's. An obvious 
merit is that coarse grid sizes can be used to save 
computer time. The other use of larger B's is 
described later. The density map (Fig. 3a; 1.8 A data) 
shows that the atoms are discernible even with B = 
12.0 A 2. However, they are no longer so with B = 
15.0A 2 (Fig. 3b; 1.5A data); only molecular 
boundaries are recognizable. In the former map, the 
peak positions have been shifted from the correct 
ones to reduce the overlap; the atoms are more 
separated. 

Unusual structures 

In the course of trials using initial densities calcu- 
lated with low-resolution (1.5-3.5 A) data, several 
unusual structures were found. They were examined 
against the 2.0 A data (s _ 0.250 A-~, 86 reflections) 
using B = 8.0 A 2. Seven different density maps were 
found to have residuals lower than that of the map 
corresponding to the correct structure (Rs = 0.0406). 
Among them, three can be considered as 'variants' of 
the correct structure. (i) In the first map (Rs = 
0.0366), one of the ring atoms is appreciably dis- 
placed. (ii) The second map (Rs=0.0381) shows a 
rotation of the six-membered ring. (iii) In the last 
map (Fig. 4a; R~ = 0.0394), one of the ring atoms is 
missing. Clearly, the fact that Sayre's equation is 
inaccurate for heterogeneous atoms is responsible for 
the higher residual of the correct structure. However, 
it is important to understand from these results that 
the diffraction data of this resolution are unable to 
distinguish various similar atomic models. This inter- 
pretation is in accordance with the fact that, in order 
to refine the structures of this resolution by least 
squares, it is necessary to locate stereochemically 
feasible atomic models and to pose restraints that 

maintain normal bond distances and angles 
(Hendrickson, 1985). 

On the other hand, the other four density maps 
with low residuals reveal structures quite different 
from the correct structure. The first one (Fig. 4b; Rs 
= 0.0195) consists of 34 well resolved peaks, instead 
of the 18 there should be, with heights in the range 
12.1-13.3 e]k -3. Although this structure is appar- 
ently incorrect, it has some basis in reality. (i) When 
the obtained peaks were assigned to C atoms with B 
= 2.0 ]k 2, the observed structure factors within 2.0 A 
resolution gave R = 0.069. The value can be further 
reduced to 0.039 if the population parameters are 
refined (in the range 0.99-1.26). This shows that the 
structure is quite satisfactory on the basis of the 
diffraction data. (ii) Provided that a reasonably large 
B is used, the present method can automatically 
exclude the closest approach of atoms, since this 
approach causes the overlap of atomic densities, 

(a) 

(b) 

Fig. 3. Optimized densities, which illustrate the use of large B's. 
(a) Densities (R, = 0.0674) obtained with B = 12.0 A 2 at i.8 A 
resolution. (b) Densities (R~=0.1211) obtained with B =  
15.0 A 2 at 1.5 ]k resolution. For other details, see Fig. 2. 
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which is not favoured by the residual. In this case, 
none of the interatomic distances is shorter than 
1.32 A. Therefore, the structure already satisfies one 
of the simplest stereochemical requirements. These 
features are nearly the same for the remaining three 
density maps (Rs = 0.0222, 25 peaks; Rs = 0.0251, 24 
peaks; Rs = 0.0286, 21 peaks). 

Importantly, all but one of these unusual struc- 
tures, including the first three, were no longer more 
favoured than the correct structure when the 1.8 A 
data (s _< 0.275 A-1,  112 reflections) were used. The 
very unusual structure shown in Fig. 4(b), however, 
was the most favoured for the 1.8 A data. 

Thus far, the F(000) term has not been included in 
the calculations. However, if we have a reasonable 
estimate for it, this estimate can be used as an 
observed structure factor in the calculation. Calcula- 
tions were made with the 2.0 A data for the four 
structures consisting of too many atoms, for which 

(a) 

, . _ . "  

(b) 

Fig. 4. Unusual structures obtained at 2.0 • resolution with B = 
8.0 A, 2. (a) Densities (Rs = 0.0394) showing that one of the ring 
atoms is missing. (b) Densities (R,. = 0.0195) consisting of 34 
peaks. For other details, see Fig. 2. 
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the calculated F(000) had been 441, 332, 331 and 
281, respectively. These were now constrained to be 
264. Although the calculations were unsuccessful in 
reducing the number of peaks, the least-squares 
residuals of the structures were increased. The first 
three structures now had Rs values of 0.1250, 0.0628 
and 0.0511, respectively, which are appreciably 
higher than that of the correct structure; the last 
structure, however, gave Rs = 0.0333, which is still 
lower than that of the correct structure. Thus, the 
constraint is effective for suppressing the evolution 
of structures of too many or too few atoms. 

Structure refinements 

In order to examine whether the present method can 
be used for structure refinement, various trials were 
made by starting from incorrect densities. Since the 
method is essentially a variational one, the radius of 
convergence is rather small. The following two tech- 
niques were found to be useful for recovering the 
correct structure. 

(i) The threshold for the exclusion/inclusion 
algorithm is set to be as low as twice the mean value 
of [ahl/IFhl. This will frequently invoke the exclusion 
of reflections from the data set and will facilitate the 
switching of the search path to other local minima, 
which may be preferable with respect to the residual 
since, during the exclusion, the residual term is domi- 
nant to some extent. A trial starting from one of the 
unusual structures (21 peaks) recovered the correct 
structure when the 1.0 A data were used. However, 
when the 1.5 A data were used, the same trial was 
unsuccessful. This shows that jumping to other 
minima occurs only when the diffraction data 
strongly require it. 

(ii) Sayre's equation exerts a strong force to 
normalize peaks, which in turn makes it difficult for 
existing peaks to disappear or for appearing peaks to 
evolve. These effects can be to some extent reduced 
when broad peaks are used. In fact, all of the variant 
structures described in the preceding section con- 
verged to the correct structure when the 1.8 A data 
were used with B = 12.0 A 2. However, the same trials 
with B = 8.0 A 2 were all unsuccessful. 

These techniques expand the radius of convergence 
to some extent but the calculations performed 
indicate that, when the data are of low resolution, 
starting densities should be reasonably close to the 
correct ones. 

Calculations on a small protein 

To see how the present method works for more 
complex structures, calculations were made on 
crambin (Hendrickson & Teeter, 1981), a small pro- 
tein of 46 amino acids (P21, a = 40.96, b = 18.65, c = 
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22.52 A,/3 = 90.77°). The structure factors used were 
calculated from the atomic parameters compiled at 
the Protein Data Bank (Bernstein et al., 1977) but 
those reflections whose amplitudes were less than 
F(000)/200 were not included in the calculations. To 
reduce computer time, grid sizes of about 0.30 A 
were used with B =  10 A 2, although this setting 
somewhat increased the overlap of neighbouring 
atomic densities. The optimizaton was performed 
with reflections in the range 10-1.5 ]k resolution, 
starting from the densities calculated using true 
phases. The map obtained has R= = 0.1227, which is 
appreciably higher than the 0.07 obtained for the 
small molecule under the same condition. This arises 
from two features common to protein structures. 
First, the protein contains six S atoms, whose scat- 
tering factor is quite different from the one assumed 
in (14). Second, the distribution of individual tem- 
perature factors is very diverse (in the range 3.4 _< B 
_< 29.0 A2), while B o v e r a l  I = 6.0 A 2 was used in (13). 
Accordingly, the optimized density map is subject to 
distortions: (i) The peaks of the S atoms are very 
broad in width but low in height. As a consequence 
of this, the C atoms attached to the S atoms are 
displaced (Fig. 5a). (ii) The atoms of the side chain 
of Tyr29 (Figs. 5a and b), which are the most flexible 
in the protein, show significant displacements, while 
their peak shapes are exceptionally regular. These 
two features are those that we found for the small 
molecule when the resolution was lowered, indicating 
that the effective resolution for this part is much 
lower than the nominal one. Regarding this, it 
should be cautioned that the present method tends to 
give rise to discrete, but sometimes spurious, peaks in 
the regions where usual Fourier maps show poor 
densities. 

Nevertheless, in the present case, the general 
quality of the map is quite satisfactory: all the atoms 
are identified as resolved peaks of height in the range 
7 - 1 0 e A  -3, while the backgrounds are within 
+0.5 e A -3" 

D i s c u s s i o n  

The minimization of the least-squares residual to 
Sayre's equation enables one to obtain density maps 
of atomic resolution without locating atomic models. 
The quality of the obtained maps compares well with 
that of the correct ones when the structures are 
composed only of identical atoms. Even though this 
is not attainable for real structures of heterogeneous 
atoms, we have seen for a test structure containing 
C, N, O and H atoms that the density maps having 
the lowest residuals well reflect the correct structure 
when the resolution of the data used is higher than 
1.5-1.8 A. With the data of resolution lower than 
2.0 A, however, we have found many unusual struc- 

tures having residuals lower than that of the correct 
structure. Their existence may indicate a limitation 
inherent in direct methods based on the principle of 
'atomicity' in general, since the present method can 
achieve the requirements of the principle in a direct, 
rather than probabilistic, exact manner. 

The present method has some capability of 
expanding the radius of convergence but the 
exclusion/inclusion algorithm is not sufficiently 
effective for low-resolution structures. To overcome 
the difficulty of local minima, it would be useful to 
employ dynamical techniques such as 'simulated 
annealing' (Kirkpatrick, Gelatt & Vecchi, 1983; Sato, 
1994). 

A previous method (Barrett & Zwick, 1971) uses 
Sayre's equation in such a way that the equation 
itself is capable of refining phases: new refined struc- 
ture factors Fh can be obtained from the current ones 
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Fig. 5. Densities for crambin optimized at 1.5 A resolution with 
= 10.0 A 2. (a) Densities in the plane containing the C*, C ~ and 
S ~ atoms of Cysi6. (b) Densities in the plane containing the 
phenyl ring of Tyr29. The crosses indicate the atomic positions 
of the true structure within 0.5/~, of the plane. Contours are 
drawn at the levels 0.5 x 1.5" e A- ~ 
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as (1 /V) l t th~.kFh_kFk.  However, this is not correct 
because the operation ~p * p2, which is equivalent to 
(1 / V) qzhYuF,_ kFk, exaggerates errors in the current 
densities.. The same question points to the current 
use of the tangent formula (for a review see 
Woolfson, 1987). As previously shown (Barrett & 
Zwick, 1971), it is possible to obtain from Sayre's 
equation 

~'.lFh_ kFk] sin (~Dh_ k "3 t- ~ k )  
k 

tan ~h = ZlFh_kFk I COS (~h-k "1- ~:~k) ' 
k 

which is essentially the same as the tangent formula 
(Karle & Hauptman, 1956). In the light of the argu- 
ment given above, the phases calculated from this 
equation are not more correct than the current ones 
but new more correct phases should be obtained 
through some process that equalizes the current 
phases with the calculated ones. 
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Abstract 

The maximum-entropy method (MEM) has been 
tested on a limited set of noisy Fourier data from a 
known electron-density distribution (EDD). It is 
shown that maximizing the entropy of the EDD 
under the usual condition of fitting the variance of 
the data set does not necessarily lead to a satisfactory 
error distribution of the calculated reflections. The 
MEM property of producing the flattest EDD con- 
sistent with the data causes the calculated values of 
strong reflections to deviate systematically as much 
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as possible from their measured values. Calculated 
values of strong reflections are usually smaller than 
their measured values. The use of a novel constraint 
on the entropy maximization greatly improves the 
form of the error distribution and also the calculated 
EDD. 

I. Introduction 

The common method of extracting the EDD from an 
incomplete and noisy data set is to fit the data to a 
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